5 resultados para AMPLIFIED POLYMORPHIC DNA

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blackwell Publishing Ltd. A linkage map of the Ixodes scapularis genome was constructed, based upon segregation amongst 127 loci. These included 84 random amplified polymorphic DNA (RAPD) markers, 32 Sequence-Tagged RAPD (STAR) markers, 5 cDNAs, and 5 microsatellites in 232 F1 intercross progeny from a single, field-collected P1 female. A preliminary linkage map of 616 cM was generated across 14 linkage groups with one marker every 10.8 cM. Assuming a genome size of ~ 10 9 bp, the relationship of physical to genetic distance was found to be ~ 300 kb/cM in the I. scapularis genome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A linkage map of the Ixodes scapularis genome was constructed based upon segregation amongst 127 loci. These included 84 random amplified polymorphic DNA (RAPD) markers, 32 Sequence-Tagged RAPD (STAR) markers, 5 cDNAs, and 5 microsatellites in 232 F1 intercross progeny from a single, field-collected P1 female. A preliminary linkage map of 616 cM was generated across 14 linkage groups with one marker every 10.8 cM. Assuming a genome size of ∼109 bp, the relationship of physical to genetic distance is ∼300 kb/cM in the I. scapularis genome.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polymerase chain reaction techniques were developed and applied to identify DNA from .40 species of prey contained in fecal (scat) soft-part matrix collected at terrestrial sites used by Steller sea lions (Eumetopias jubatus) in British Columbia and the eastern Aleutian Islands, Alaska. Sixty percent more fish and cephalopod prey were identified by morphological analyses of hard parts compared with DNA analysis of soft parts (hard parts identified higher relative proportions of Ammodytes sp., Cottidae, and certain Gadidae). DNA identified 213 prey occurrences, of which 75 (35%) were undetected by hard parts (mainly Salmonidae, Pleuronectidae, Elasmobranchii, and Cephalopoda), and thereby increased species occurrences by 22% overall and species richness in 44% of cases (when comparing 110 scats that amplified prey DNA). Prey composition was identical within only 20% of scats. Overall, diet composition derived from both identification techniques combined did not differ significantly from hard-part identification alone, suggesting that past scat-based diet studies have not missed major dietary components. However, significant differences in relative diet contributions across scats (as identified using the two techniques separately) reflect passage rate differences between hard and soft digesta material and highlight certain hypothesized limitations in conventional morphological-based methods (e.g., differences in resistance to digestion, hard part regurgitation, partial and secondary prey consumption), as well as potential technical issues (e.g., resolution of primer efficiency and sensitivity and scat subsampling protocols). DNA analysis of salmon occurrence (from scat soft-part matrix and 238 archived salmon hard parts) provided species-level taxonomic resolution that could not be obtained by morphological identification and showed that Steller sea lions were primarily consuming pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon. Notably, DNA from Atlantic salmon (Salmo salar) that likely originated from a distant fish farm was also detected in two scats from one site in the eastern Aleutian Islands. Overall, molecular techniques are valuable for identifying prey in the fecal remains of marine predators. Combining DNA and hard-part identification will effectively alleviate certain predicted biases and will ultimately enhance measures of diet richness, fisheries interactions (especially salmon-related ones), and the ecological role of pinnipeds and other marine predators, to the benefit of marine wildlife conservationists and fisheries managers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The detection of pertinent biomarkers has the potential provide an early indication of disease progression before considerable damage has been incurred. A decrease in an individual’s sensitivity to insulin, which may be quantified as the ratio of insulin to glucose in the blood after a glucose pulse, has recently been reported as an early predictor of insulin-dependent diabetes mellitus. Routine measurement of insulin levels is therefore desirable in the care of diabetes-prone individuals. A rapid, simple, and reagentless method for insulin detection would allow for wide-spread screenings that provide earlier signs of diabetes onset. The aim of this thesis is to develop a folding-base electrochemical sensor for the detection of insulin. The sensor described herein consists of a DNA probe immobilized on a gold disc electrode via an alkanethiol linker and embedded in an alkanethiol self-assembled monolayer. The probe is labeled with a redox reporter, which readily transfers electrons to the gold electrode in the absence of insulin. In the presence of insulin, electron transfer is inhibited, presumably due to a binding-induced conformational or dynamic change in the DNA probe that significantly alters the electron-tunneling pathway. A 28-base segment of the insulin-linked polymorphic region that has been reported to bind insulin with high affinity serves as the capture element of the DNA probe. Three probe constructs that vary in their secondary structure and position of the redox label are evaluated for their utility as insulin-sensing elements on the electrochemical platform. The effects of probe modification on secondary structure are also evaluated using circular dichroism spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies use genetic markers to explore population structure and variability within species. However, only a minority use more than one type of marker and, despite increasing evidence of a link between heterozygosity and individual fitness, few ask whether diversity correlates with population trajectory. To address these issues, we analyzed data from the Steller’s sea lion, Eumetiopias jubatus, where three stocks are distributed over a vast geographical range and where both genetic samples and detailed demographic data have been collected from many diverse breeding colonies. To previously published mitochondrial DNA(mtDNA) and microsatellite data sets,we have added new data for amplified fragment length polymorphism (AFLP) markers, comprising 238 loci scored in 285 sea lions sampled from 23 natal rookeries. Genotypic diversity was low relative to most vertebrates, with only 37 loci (15.5%) being polymorphic. Moreover, contrasting geographical patterns of genetic diversity were found at the three markers, with Nei’s gene diversity tending to be higher for AFLPs and microsatellites in rookeries of the western and Asian stocks, while the highest mtDNA values were found in the eastern stock. Overall, and despite strongly contrasting demographic histories, after applying phylogenetic correction we found little correlation between genetic diversity and either colony size or demography. In contrast, we were able to show a highly significant positive relationship between AFLP diversity and current population size across a range of pinniped species, even though equivalent analyses did not reveal significant trends for either microsatellites or mtDNA.